



**Project no.** 217725

#### Project acronym: Mind the Gap

**Project title:** Mind the Gap: Learning, Teaching, Research and Policy in Inquiry-Based Science Education

Dissemination level: O

Thematic Priority: Science in Society

Funding scheme:

Deliverable N° 5.6

Deliverable title Conference symposium

Due date of deliverable: Month 17 Actual submission date: 01/09/2009

Start date of project: 01/04/2008

Duration: 24 months

Name of Coordinator: Professor, Doris Jorde, University of Oslo, Norway Name of lead partner for this deliverable: Ghislaine gueudet

# Enhancing Inquiry-based science teaching with online resources The examples of VITEN and PEGASE ESERA 2009

## Outline

- 1. ICT and IBST, the potential of online resources
- 2. VITEN, an online resource for students and teachers (Norway)
- 3. PEGASE, an online resource for teachers and teacher trainers (France)
- 4. Conclusion

#### **1.** ICT and IBST, the potential of online resources

Possible interventions of ICT for IBST, a student focus (van Joolingen *et al.* 2007): propose manageable inquiry tasks, scaffold inquiry, reduce the complexity of real research.

Different possible materials:

Simulation, visualisation, modelling, collaboration

Online resources may gather all these possibilities

Possible interventions of ICT for IBST, a teacher focus: propose manageable inquiry tasks, scaffold organization of inquiry in class, propose analysis tools grounded in educational research

#### **1. ICT and IBST, the potential of online resources**

A central questioning in educational R&D: the quality of online resources (Mercat *et al.* 2008)

Dimensions for quality in an IBST-perspective:

- -Scientific potential for IBST
- -IBST scaffolding
- -Possible customization
- -Intervention of users in the design
- -Collective dimensions
- -Ergonomy
- -Legal aspects

### **1.** ICT and IBST, the potential of online resources

### -Scientific potential for IBST

- Clarity of the teaching/learning goals, adequacy of the proposed tasks to the declared goals.
- e.g Problem-based, or exploration of a controversy
  - From an empirical activity towards scientific concepts: experimentation, modelling, evaluation, argumentation, language.

#### -IBST scaffolding

- For students: scaffolding the evolution process from empirical activity to scientific knowledge. Building knowledge about science.
- For teachers: organization of inquiry in class, analysis tools grounded in educational research

#### **2.** VITEN, an online resource for teachers and students

Several programs, structured into independent modules Interactive presentation of

concepts The the « Gene program



#### 2. VITEN, an online resource for teachers and students

#### Interactive exercises, vizualisation tools



![](_page_7_Picture_3.jpeg)

#### **2.** VITEN, an online resource for teachers and students

Organizing a debate: different roles for the students. Links towards external websites with several kinds of arguments.

![](_page_8_Picture_2.jpeg)

### **3.** PEGASE, an online resource for teachers and

![](_page_9_Figure_1.jpeg)

Teaching sequences with Resources making the choices comments and video clips of explicit and giving helps to

professional development

#### 3. PEGASE, teaching part

# Example in mechanics

![](_page_10_Figure_2.jpeg)

#### 3. PEGASE, professi onal develop ment part

#### ...Working in small groups:

- Encourages student autonomy when learning new topics. Teachers can assist individual groups where necessary
- Provides the students with a first understanding of new topics through discussion, experimentation and reading

Sharing the results with the whole class:

- Encourages students to present and defend their findings to the rest of the class
- Enables teachers to correct any of the findings and sum up the new knowledge covered

The activities thus structure the teaching method

**Teaching: related activities** 

![](_page_11_Picture_9.jpeg)

#### 4. Conclusion

- VITEN and PEGASE are not specifically designed for IBST; they comprise inquiry tasks, inserted in the curriculum and coordinated with other kinds of courses. This articulation can support IBST implementation by teachers.
  - -Scientific quality: clear teaching goals; problem-based; from empirical observation to scientific concepts.
  - -IBST scaffolding: for the students, attributing roles and providing arguments in a debate (VITEN); for the teacher, advice for organizing the discussion in class, and description of frequent students' difficulties and alternative conceptions (PEGASE).
  - Possible improvements: involvement of the users (teachers) in the design process. Forums; report of classroom experiments.