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ABSTRACT

Tailoring is the adaptation of generic software applications
such as word processors, spreadsheets, e-mail systems, and
drawing editors to the specific work practices of a user
organization. Tailoring shares characteristics with both
design and use of computer applications, but a “design
distance” separates them. An extensive literature survey and
analysis of emerging trends have identified three levels of
tailoring: customization, integration, and extension. They
are defined, tools to support them are described, and
examples are given.

KEYWORDS: tailoring, human-computer interaction,
object-oriented programming, design rationale, design
distance, use distance.

INTRODUCTION: IDENTIFYING THE PROBLEM
Packaged, off-the-shelf software products are dominating the
software industry today because they provide standard
solutions to recurring tasks performed by people in user
organizations. A packaged software product is a generic
application designed for a standard task, such as writing a
paper (word processor), balancing a budget (spreadsheet), or
creating a diagram (drawing editor). The tasks for which
these applications are built are not well defined in advance,
cither because the developers have based their design on
prior technology or intuition rather than on contact with
real users, or because the scope of the task could not be
anticipated in advance of actual use, and hence is likely to
change as the application is being used. To fully utilize the
potential of generic applications and prevent them from
becoming rigid and static, they should be made tailorable
(open and adaptable). How to accomplish this is the
problem addressed in this paper. From this point of view
tailoring is an activity that takes place after the original
design and implementation of the application, but it shares
characteristics with both original design and later use:

Tailoring-as-design. Tailoring is continued development of
an application by making persistent modifications to the
application, as opposed to the products created with it [15].

Tailoring-as-use. Tailoring is initiated in response to an
application being inefficient or difficult to use for a specific
task at hand.

Tailoring can begin during, or right after, installation of the
application, or later during advanced use of it. It is the latter
aspect that is the focus of this paper. The actors involved in
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the tailoring process are people in the user organization:
individual users, local developers, or groups of users.
Contact with original developers is assumed to be minimal,
except for reporting back to the developer organization
about local adaptations. This encourages developers to
incorporate generally useful adaptations in future releases of
the application.

A generic application is different from an application
framework, but builds on it. An application framework is
by definition not a usable application. It must be filled in
with application-specific implementations before it can be
instantiated and used, and hence is better suited as a tool for
application developers than for end-users. An application
framework shares the tailoring-as-design characteristic
described above, but not the tailoring-as-use characteristic.
Tailoring-as-use is an important condition for the success or
failure of end-user tailorable applications due to its
emphasis on rask-orientation rather than rechnology-
orientation A user engaged in performing a specific task
becomes the “owner” of a problem when the application can
no longer be used for the task. If this problem can be
associated with a certain use, it will motivate an interest in
understanding the problem and in learning to tailor the
application to solve the problem, even if this includes
learning a formal language. This situation is in many cases
not a reality today. It is more common to handle breakdown
situations by asking someone else or otherwise work
around the problem, even if this creates suboptimal
solutions. Tailoring, as presented in this paper, is an
approach to helping users solve their own problems.

Tailoring is related to adaptive maintenance in software
engineering. Adaptive maintenance is software maintenance
performed to make a computer program usable in a changed
external environment {7]. It is distinguished from corrective
maintenance (correcting faults) and perfective maintenance
(improving performance).

RELEVANT PREVIOUS WORK

This work builds on the early work in the design and
implementation of tailorable systems by Trigg and his
colleagues at Xerox PARC [32]. A major goal of the
NoteCards hypermedia system was to make it adaptable.
They defined an adaptable system to be a system where an
end-user "produces new system behaviour without help
from programmers or designers." They identified four ways
a system can be made adaptable: (1) flexibility -- generic
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objects and behaviors that can be interpreted and used
differently are provided, (2) parameterizable -- the user can
choose between alternative behaviors, (3) integratable -- the
system can be integrated with other components, internal or
external, and (4) tailorable -- users are allowed to change the
system itself by building accelerators, specializing
behavior, or adding new functionality.

Another inspiration has been the empirical studies on the
use of tailorable systems reported by Mackay [18] and Nardi
[27]. Mackay's work includes data and an analysis of how
users of a UNIX software environment make persistent
adaptations of the system. One of her findings is that many
users do not tailor (customize) their applications as much as
they could. One reason for this is that it takes too much
time and deviates from other activities.

Nardi's material is from users of spreadsheets and CAD
packages. One of her findings is that users are able to
master the formal languages embedded in these applications
when they have a need and motivation for doing so. She
concludes from this that tailoring-languages should be task-
specific, that is, the primitives of the language should
correspond to tasks of the application domain. An example
is the spreadsheet formula language which has as primitives
task-specific functions that map to tasks frequently
performed by spreadsheet users (sum, average, etc.).

The contribution of this paper is twofold: (1) identification
of three fundamental tailoring activities, and (2) addressing
some of the remaining difficulties with tailoring identified
by the authors above. The latter is accomplished by finding
answers to the following three questions: (1) How can
users tailor without direct access to original designers and
programmers?, and (2) how can tailoring be better aligned
with other work activities?, and (3) how can tailoring be
made a human activity (independent of specific computer
technologies, such as spreadsheets and hypermedia)? The
short answers (my positions) to these three questions are,
respectively: (1) integrating design rationale with the
application, (2) tailoring after breakdown in use, and (3)
task-specific indexing from presentation (task) objects to
the underlying functionality implemented in a general
purpose programming language. These three positions will
be further elaborated in this paper. They are not meant to be
a final answer on tailoring, but rather to present one
perspective and to stimulate further research on the topic.

THREE LEVELS OF TAILORING

In the literature on tailoring many different concepts are
used to describing tailoring activities. The most common
ones are adaptation, customization, end-user modification,
extension, personalization, and tailoring. They partly
overlap with respect to the phenomena they refer to, and the
same concepts are sometimes used when referring to
different phenomena. There is also some overlap with a
related area, end-user programming. End-user programming
refers to the activity of writing an application program in
an end-user programming language, such as HyperTalk,
Visual Basic, or AppleScript. These special purpose
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programming languages (also called scripting languages) are
interpreted languages which means that independent pieces
of program code (scripts) can be written and immediately
executed, thus shortening the edit-compile-debug cycle of
compiled languages. Most general purpose programming
languages are compiled languages.

Tailoring might include end-user programming as a
technique, as in categories 2 and 3 defined below, but end-
user programming is first of all a technique for creating new
applications, that is, a design concept. An example of an
end-user programming language is the spreadsheet language,
which has formulas to create new spreadsheets (design) and
macros to modify the spreadsheet application itself
(tailoring).

The literature analysis reported in this paper gave rise to
three categories of tailoring: customization, integration, and
extension. As in any categorization, there are instances that
cut across categorical boundaries. They are mentioned at the
end of each subsection.
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Figure 1: Tailoring by customization, integration, and ext-
ension by bridging a use distance and a design distance.

Figure 1 illustrates the three categories (levels) of tailoring.
The boxes in thin lines name the means (tools and
techniques) for doing tailoring. Tailoring is seen as a way
to bridge the design distance between presentation objects
accessible in the user interface and the underlying
implementation code defining the functionality and written
as text in a general purpose programming language.

Presentation objects range from simple user interface
widgets such as menu items, buttons, and icons, through
composite widgets such as menus, menubars, and dialog
boxes, and up to high-level, application-oriented
presentation objects such as tables, charts, and domain-
specific symbols. They are the “handles” encountered in the
user interface that mediate input and output to and from the
system. Input is initiated when the user selects a
presentation object with, for example, a mouse or the
keyboard. Output is initiated by the system as a result of
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executing the functionality associated with the selected
presentation object. It may create new presentation objects
or change the appearance of existing ones in addition to the
effects caused by executing the functionality.

The difference, or gaps, between presentation objects and
implementation code can be illustrated with HyperCard (see
Figure 2). From a button presentation-object there is access
(via a property sheet) to a HyperTalk script that defines the
functionality associated with the presentation-object (and
executes it when the button is pressed and released).

Button Name:

Bkgnd button number: 5
Bkgnd button 1B: 205
[X Show Name

X Auto Hilite
[X shared Hilite

Style:

@ Transparent
QO Opaque

O Rectangle

O Shadow

O Round Rect
O Check Box
O Radio Button

LinkTo..

y A B Y
()=

Figure 2: HyperCard's property sheet provides basic
tailoring options. There is access from each presen-
tation object (e.g., button Rotate) to its functionality
written as a HyperTalk script (script not shown).

HyperCard supports both customization (modifying name,
style, icon, and the effect of a button) and simple
integration (linking a button to a another card). The most
important difference between HyperCard and the general
approach to tailoring presented in this paper is that
scripting languages, such as HyperTalk, are not general
purpose programming languages and cannot be used to
create full-fledged implementations. Languages for
implementation need to support tailoring by extension in
addition to customization and integration. This requires
language mechanisms for specialization and virtual binding
{20], and compilation in addition to interpretation [21]. As
will later be shown, scripting languages are better thought
of as special purpose “integration languages” than as
general purpose implementation languages.

Buttons [19], which resembles HyperCard in many ways,
gives the user access to implementation code written in a
general purpose programming language (LISP). The
buttons are presentation objects like buttons in HyperCard,
but have an additional feature: they can be encapsulated in e-
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mail messages and other documents and passed around to
other users within the Xerox LISP environment. Buttons
are not meant to be inserted into application frameworks
and are therefore not well suited for generic applications.
Nevertheless, both HyperCard and Buttons have been
important inspirations for the current work: HyperCard due
to its simple design and ease of use, and Buttons because it
suggests ways to integrate design rationale with basic
executable program units.

Use distance and design distance

The usability of an application can to a large extent be
determined by how well the appearance (“look & feel”) of
presentation objects “speak” for the use of the application.
This identifies a use distance (see Figure 1) between the
user and the presentation objects, a distance between
anticipated effects (based on the goal to be accomplished)
and the actual outcomes of executing commands in the
interface. This distance can be divided into two (partly
disjoint) mental distances: (1) semantic distance and (2)
articulatory distance [16]. A goal of direct manipulation
interfaces is to minimize these two distances. Two ways to
shorten the semantic distance are: (1) to bring the computer
closer to the user by building interfaces that aid the user in
goal formulation and task execution, and (2) to bring the
user closer to the computer by helping him or her to learn
the interface better.

The articulatory distance is shortened by properly designed
presentation objects. Examples of presentation objects with
a short articulatory distance are the text style menu items
Bold, Italic, Underline. The difference between the look &
feel of these menu items and the effect of using them is
minimized. They are therefore sometimes referred to as
onomatopoeic presentation objects. An onomatopoeic word
in a natural language is a word whose meaning (the referent)
is imitated by the sound (a presentation object) associated
with uttering the word (boom, splash, scratch, etc.).
Commercial application vendors put major efforts into
making icons visually onomatopoeic with respect to a
target task domain in order to make them self-explanatory.

The usability of a system will improve if we can bridge the
use distance because the user will experience a direct
engagement in the world modeled by the presentation
objects. This is important to ensure task-oriented user
interfaces, but beyond the scope of this paper and therefore
not addressed. The focus in this paper is to find a way to
bridge the design distance between presentation objects and
their underlying implementation codes.

The design distance prevents a user from understanding the
rationale behind the implementation code underneath a
presentation object [26]. Although it is different from the
use distance, the design distance is also partly mental. It
becomes important when the user knows how to use the
application (i.e., the use distance has been bridged), but the
underlying functionality is no longer adequate for the task
the user wishes to perform. Therefore, knowing about the
design distance and how it can be overcome is of the utmost



importance for anyone wanting to understand tailorability
and how it can help to improve the usefulness of an
application.

Whereas a short use distance will improve the usability of
an application, a short design distance will not necessarily
improve the usefulness. There is a potential danger in
narrowing the design distance by bringing presentation
objects closer to the implementation code. For example, if
textual presentations are automatically extracted from the
source code itself (e.g., from its function names), systems
with short design distance will be created -- but also with
low usability. This is not the intent in this paper. On the
contrary, to ensure high usability, presentation objects
should align with the structure of an external task domain
model (including the work to be supported) rather than with
the structure of the implementation code. This may create a
permanently wide design distance, but it can be bridged,
and three techniques for this purpose are presented in this
paper: customization forms, integration languages, and
layers of extensions. When taken in their proper order (from
top to bottom) they support a gradual transition into the
computational complexity of an application.

Customization (Level 1)

Customization is illustrated in Figure 3. The screen
snapshot shows a preference form from the Eudora e-mail
system. A preference form is a dialog box in which a user
can set parameters for the various configuration options the
application supports. In the case of Eudora, typical options
include choosing an e-mail address, fonts for reading and
writing, and the frequency of updating the mailbox. The
system comes with default values for many of these
options.

o oo
Real Name: Anders March

Connection Methed: @ MaeTCP O Communications Toolbox O Offline
SMTP Server: ifi.uio.no

Return Address: andersm@ifi_uio .no

Check For Mail Every 5 | tinctets)

Ph Server: ph.uio.ne

Diakyp Username:

Message Window Yidth: Application TEXT files belong to:

(____Microsoftwora )

Message Window Height: E

Screen Font: M [ Automatically save attachments to:

swe: [ | ( Desktop Folder ]
Pritront: [ Cowier )
E Sze: |10 |

Figure 3: Customizing the Eudora e-mail system

Customization can also be used to modify the appearance of
presentation objects by direct manipulation. For example, a
HyperCard button-icon can be modified into a new icon or a
text-string. The tools used for customization are called
customization forms and they help to shorten the design
distance by allowing users to edit attribute values of
presentation objects during run-time. Customization is
broadly defined as follows:

Modifying the appearance of presentation
objects, or editing their attribute values by
selecting among a set of predefined
configuration options.

Customization is the most common term used in the
literature when describing tailoring. It is similar to what
Trigg et al. [32] call parameterizable options, from which a
user can choose between alternative system behaviors.
Mackay [18] defines customization as the mechanisms that
allow users to adapt their personal software environment
without writing code, with changes that persist across
sessions. The examples she gives include the setting of
options such as menus, fonts, and window layout, and the
creation of macros to automate repeatedly performed
commands. This paper includes the latter aspect of tailoring
in level 2, integration, since it is a form of end-user
programming (writing or recording macros and scripts).

Cypher’s definition of customization [5] is similar to
Mackay’s and also includes both customization and
integration. He defines customization as any capability that
makes a generic program suitable to a specific user need,
and he gives as examples preferences (as defined above),
templates (such as style templates on word processors), and
automated activities (created by macros and scripts). Neither
Mackay nor Cypher discuss extension, level 3.

Fischer and Girgensohn [9] identify the following four
characteristics of end-user modifiability: (1) setting
parameters (as defined above), (2) adding functionality to
existing object classes, (3) creating new object classes by
modifying existing ones (extension, level 3), and (4)
defining new functionality from scratch. Characteristics 2
and 4 are not included in my definition of tailoring since
they have more in common with original design and
programming than with tailoring. It is argued later in this
paper that an important aspect of tailoring by extension
(level 3) is that end-users should be able to add to existin g
(and working) code, but not to replace (and possibly
destroy) it, and that strongly-typed object-oriented
programming languages are especially well suited for this
purpose. Furthermore, Fischer and Girgensohn do not
include any means for integration by scripting, such as the
automation of repeatedly performed commands.

Girgensohn et al. [13] have proposed an extension to static
customization forms with the concept of dynamic forms.
This technique allows a form to be incrementally displayed
by hiding irrelevant fields. Each field is an active entry
similar to a spreadsheet cell and thus can have formulas
attached. Furthermore, new entries (such as class attributes)
can be added to the form by a high-level form description
language. This allows new presentation-object classes to be
created by customization.

Integration (Level 2)

Integration goes beyond customization by allowing users to
add new functionality to an application. This is
accomplished without accessing the underlying
implementation code. Instead, users tailor an application by
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linking together predefined components within or across the
application. Each component is a modular piece of
functionality implemented to execute a well-defined task,
such as a single command in a word processor, or a chart-
drawing function in a spreadsheet. Integration is also a way
to automate a sequence of frequently repeated commands to
improve existing functionality.

Components to be integrated range from low-level
commands to high-level applications, and they consist of a
presentation object (command name, visual appearance) and,
if applicable, an underlying implementation (the code
associated with executing the component). Components are
integrated by means of an advanced copy&paste operation
(which copies both presentation object and functionality),
or by macro and script recording. This gives rise to two
kinds of integration:

1. Hard integration: a component is integrated by a
“copyd&paste” operation that results in the component
becoming physically attached (“glued” or “plugged”) to
the application.

2. Soft integration: a component is integrated by means of
a macro, a script, or an agent, and may execute its
functionality in the context of another application.

Hard integration is based on the analogy of hardware
engineering where modules (chips and boards) are plugged
into sockets inside a computer [4]. The result is a seamless
integration of a new component with an existing
application as long as there is a well-defined protocol of
communication between them. Hard integration can further
be divided into two subcategories: (1) textual (compile-
time) composition, and (2) binary (run-time) composition.
Textual components need information about “slots” or
“hooks” for integration into the implementation code (such
as class names, variable declarations, and method
definitions). This type of integration is closely related to
“extenstion,” and is further discussed and defined in the next
section.

Binary components (such as object instances) are integrated
into the run-time environment of the application. A binary
component needs information about input/output
parameters to be passed between itself and the run-time
environment (such as in message-passing protocols). Binary
components are therefore not extensible the way textual
components are. They have more in common with soft
integration (see below). In environments that support
dynamic (run-time) interpretation of textual components, it
i1s possible to combine the two types of hard integration
[21, 22].

Soft integration is a way to loosely couple program
executions (commands, method invocations, and object
instances) and to link design rationale (a type of program
documentation described below) with the application. It is
most notably supported by scripting languages. Scripting
goes beyond low-level macro recording in two fundamental
ways: (1) by allowing high-level components to be
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integrated, and (2) by allowing scripts to be edited in a
high-level language.

An example of a macro is an Emacs command for copying
all section headings of a paper and putting them into a new
buffer as an outline of the paper. Such a macro can be
recorded and named in Emacs [3]. The new macro consists
of a sequence of existing Emacs commands (search for
heading, copy heading, create new buffer, paste heading,
etc.). Macro recording makes it possible to create
commands that did not previously exist in the application.
However, in Emacs, it is difficult to edit a macro after it
has been recorded. It is easier to abort the recording and start
all over again than it is to edit the macro afterwards. This
shortcoming is eliminated by high-level scripting languages
that support script editing after recording. Figure 4 shows a
script recorded with the scripting language AppleScript
[29]. The script copies all the text of one file and places it
into a new one and then saves the new file with a unique
filename. This allows several versions of a paper to be
saved on file.

tell application "Scriptable Text Editor"
activate

select contents of document 1

copy

make new document at beginning

set position of document 1 to {97, 236}
paste

copy "-of-" & name of document 1 to Filenamel
copy the ticks to timestamp

copy "copy-' & timestamp & Filenamel to
FileName2

save document 1 in FileName2 --a doc snapshot

end tell

Figure 4: A script that automates a sequence of text
editing commands. The numbers (97, 236) refer to the x &
y coordinates of the top left comer of the new document.

Another example of high-level component integration is a
script that lets the user retrieve information from a database,
use a spreadsheet to graph it, and then place the graph into a
text he or she is writing with a word processor. This kind
of tailoring has been described by Sumner and Stolze [30]
as the “high-tech toolbelt” approach to the use of
commercial, off-the-shelf applications. It may include
components executing in the context of a remote host [33].
This kind of soft integration may also be possible with hard
integration by “copying” the graph-drawing component of
the spreadsheet and “pasting” it into the word processor,
making it a seamless word processor with graph-drawing
functionality [2].

We can now define soft integration as:

Creating or recording a sequence of program
executions that results in new functionality
which is stored with the application as a
named command or component.



Languages that create or record a sequence of program
executions (most notable macros and scripts) are referred to
as integration languages. They serve to integrate existing
run-time functionality rather than to create new
functionality from scratch. Scripting languages are therefore
special purpose programming languages and not suitable as
general purpose implementation languages. Integration
languages help to bridge the design distance by serving as
high-level (possibly application-oriented) languages that fill
in part of the gap between presentation objects and
implementation code.

The components linked by an integration language can also
help to bridge the design distance. A special kind of
component in this regard is design rationale. Design
rationale is the documentation that captures the reasons
behind an artifact. Most work on design rationale is based
on representing argumentation in the form of issues,
positions, and arguments [24]. The current work generalizes
the concept of design rationale to include other means for
representation as well: pictures, diagrams, stories,
argumentation, and scenarios [26]. Argumentation is
considered only one of several alternative ways to capture
the reasoning behind an artifact. Design rationale, which
can be linked to implementation code by means of soft
integration, shares characteristics with both presentation
objects and implementation code and can thus help to bridge
the design distance in two different ways:

1. From presentation and downward. Design rationale
components and presentation objects are built out of
the same kind of material: text, graphics, sound, video,
and animation. They are either static or dynamic.

2. From implementation and upward. Design rationale
aligns with the structure of the implementation code at
significant points in its development due to their co-
evolution. Design rationale is a way to comprehend the
implementation.

An alternative technique is to document a system’s dynamic
(run-time) behavior rather than its static implementation
code. An approach to the former has been suggested by
Dourish in chapter 6 of this volume [6].

Trigg et al. [32] define a system as integratable if it can be
linked with other facilities within its environment or
connected to more remote sources. They have used this
concept to integrate NoteCards with a set of media editors
(for text, graphics, bitmaps, and animation). For example,
the animation card type is integrated with an animation
editor that is located in the surrounding LISP environment.
By allowing users to integrate new NoteCard types with
corresponding types of media editors, they support tailoring
by integration.

In their discussion of integration, Trigg et al. also include
accelerators. They define an accelerator as “a piece of
functionality that encapsulates a set of existing behaviors.”
This definition captures both Emacs macros and keyboard
shortcuts. Both Cypher [5] and Mackay [18] include macro
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and script recording as part of their definition of
customization (described above). At the GMD research
center in Germany, a team of computer and social scientists
have experimented with various ways to adapt commercial
applications by means of customization and integration
[28]. In particular, they have developed an extension to the
spreadsheet system Excel called Flexcel. Flexcel integrates
support for both adaptability (tailoring) and adaptivity
(system-initiated help). Adaptivity is supported by a
knowledge-based critiquing mechanism that helps users to
do the adaptation. It was found to be an important resource
during adaptation.

Malone et al. describe Oval [23] as a radically tailorable
tool for cooperative work which allows new groupware
applications to be created by combining existing objects,
views, agents, and links from their tailoring language. It
thus supports integration of high-level components within
an application in order to create more specialized
applications. Oval has no means for recording macros and
scripts, but it does have a rule-based language for
responding to external events, such as mechanisms for
filtering incoming messages in an e-mail application.

Extension (Level 3)

Integration is well suited for tailoring tasks that do not
require changes to the implementation code of an
application or any of its components. It assumes, for
example, that a spreadsheet drawing component has all the
functionality needed for graph-drawing, and that if it
doesn’t, the functionality can be found somewhere else and
integrated. However, this is not always the preferred
solution. Sometimes components are unavailable,
unsuitable, or not even working properly. They may cause
fragile links among other components and thus create
unstable applications that may prevent further tailoring or
even the use of the application. To compensate for this
potential weakness, components themselves must be made
tailorable.

The kind of tailoring discussed in this section is tailoring
by extension: adding new functionality to applications and
textual application components. This allows radical changes
to be made, which are changes that cannot be anticipated by
developers at design time and that require changes to the
implementation code itself [8, 21, 26]. Whether these
changes should be done by end-users, developers, or
automatically by the application itself, depends on the kinds
of extensions to be made.

What implementation language to use when building
extensible applications is a matter of debate. In this paper it
is argued in favor of genmeral purpose programming
languages, and strongly-typed, object-oriented languages in
particular. Such languages have dedicated mechanisms for
creating type-safe extensions to an application without
corrupting the old code. One such mechanism is
subclassing (also referred to as specialization or
inheritance).



Subclassing is a way to create a new class of functionality
by copying and extending an existing class originally
designed and implemented by developers and organized in a
classification hierarchy (Figure 5). Subclassing is safest in
strongly-typed, block-structured languages in which a
subclass is not allowed to redefine the attributes and
methods of its parent class, and can be placed next to its
parent at the same block level. Extensions in the BETA
language [20] are created by adding new attributes to a class,
and new statements to virtual procedures (extensible
methods). Extensions are added at “open points” in the
application. Open points, described by Grgnbzk et al. in
chapter 8 of this volume [14], are identified by developers
during the design of the application. They point out areas in
the implementation where multiple design alternatives were
discussed, but only one was actually implemented. Open
points provide “hooks” for further extensions where it is
possible to implement alternative designs in the future.

Shape
scale -

advancedShape (3)
D A

Circle Rectangle Polvgon Fractal (2)

Rec 1

Figure 5: Classification hierarchy of a drawing program
with three types of extensions: (1) simple, (2) complex,
and (3) restructuring. Abstract superpatterns are in plain;
concrete patterns are underlined. Scale is method (virtual
procedure pattern) of class (pattern) Shape. In Beta {20},
both classes and methods are patterns.

Safe extension does not mean that old code should never be
discarded -- it should -- but not by end-users. Modification
and replacement of existing code can be accomplished by
restructuring, reseeding [11], or reorganizing [12] the
system functionality. This is an activity that is done by
developers, and should include the most important
extensions created by tailors in the user organizations.
Extension is defined as follows:

Extension is an approach to tailoring where
the functionality of an application is
improved by adding new code.

When extending an application written in an object-oriented
programming language and organized in one or more
classification hierarchies, we identified three kinds of
extensions that are illustrated in Figure 5. (The terminology
used in Figure 5 is used in the remainder of this section:)

1. Simple extension: specialization of concrete patterns
(Rectangle --> myRectangle; Rectangle -->
Square).

2. Complex extension: specialization of abstract
superpatterns into concrete patterns (Shape -->
Circle; Shape-->Fractal).
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3. Restructuring: specialization of (abstract or concrete)
superpatterns into new (abstract or concrete)
superpatterns (Shape --> advancedShape; Shape -->
Qval). '

Simple extension is extension of the patterns that can be
directly accessed from presentation objects in the user
interface of the application. They are normally concrete
patterns (such as Circle, Rectanagle, and Polvygon in
Figure 5). For example, to create a special type of
Rectangle (such as myRectanale) we simply extend the
Rectangle implementation code that can be accessed from
its associated presentation object (the graphical symbol of a
rectangle on the screen). If the newly added extensions
preserve all the defining properties of the parent class, the
parent class can be made abstract (i.e., a non-instantiated
Rectangle). On the other hand, if the new extensions
define a new kind of graphical shape, such as square, we
may want to keep Rectangle concrete.

‘When the implementation code is organized in one or more
classification hierarchies some of the functionality will not
be part of concrete patterns. The functionality is still
available, but it is defined higher up in the hierarchy. For
example, a Scale command may be defined as a virtual
procedure pattern (extensible method) of a pattern Shape
(Figure 5). shape is an abstract superpattern and therefore
not (directly) instantiated during a program execution.
Abstract superpatterns cannot be directly accessed since they
have no “handles” (presentation objects) in the user
interface; there are no Shape presentation objects, only
presentation objects for the concrete subpatterns Cixcle,

myRectangle, and Polvgon.

Abstract superpatterns define the general properties and
overall behavior of a concept. They are specialized into
operational concepts by subclassing. However, abstract
superpatterns should also be accessible to the user since
they provide hooks for extensions similar to the concrete
patterns. There are two ways to extend an abstract
superpattern: (1) through extensions that create concrete
subpatterns (complex extension), and (2) through
extensions that create new superpatterns (restructuring).

Support for complex extension is needed when we want to
add new functionality:

* A new graphical shape (such as a fractal) that cannot be
created by simple extension (Figure 5).

+ A LISP function for counting the number of words in a
text-editor buffer (Figure 6).

* A new kind of kitchen appliance (such as a microwave
oven) to a kitchen design environment [9].

» A graphics editor to a word processor that has only
text-editing capabilities.




(defun word-count ()
(interactive)
(let ((count 0))
(goto-char (point-min))
(while (< (point) (point-max))
(forward-word 1)
(setq count (plus 1 count)))
(message "buffer contains %d words* count)))

Figure 6: Extending Emacs with a LISP function for
counting the number of words in a text editor buffer.

What these four examples have in common is that they
cannot be created in the same simple way as myRectangle.
This is because the implementation code to be extended
may not be accessible from any of the application’s already
available presentation objects. If we want to add a Fractal
shape to a generic drawing program or a word-count
function to a text editor, and there is nothing already in the
application that can serve as a natural base, we have build
more or less from scratch. Fractal, for example, can be
built as an extension to the abstract superpattern Shape
(Figure 5). It will be a non-trivial extension, but the new

Fractal shape may not have any side effects since it
becomes a leaf node in the classification hierarchy. In this
case there are few or no dependent subpatterns of Shape that
have to be included as subpatterns of Fractal.

If we want to extend scale, however, we have to be more
cautious (Figure 5). We can, for example, specialize the
pattern it is a component of (e.g., Shape -->
advancedshape), which may require restructuring some of
the subpatterns of Shape if we want them to inherit from
advancedshape (at least giving them a new superpattern
name). Some of them may also depend on the scale
definition in Shape and may therefore have to be updated
and recompiled to make them compatible with the scale
extensions added in advancedShape.

Similarly, adding a new kind of shape, such as Qovail
(subpattern of Shape, superpattern to Circle) may also
require restructuring. To be generally available, such a
pattern should be added as a superpattern and thus may
require restructuring and recompilation of dependent
subpatterns (such as Circle). Automatic restructuring by
creating new superpatterns based on factoring out common
(e.g., duplicated) attributes and methods of same block-level
classes, without adding any new functionality, is not
considered an extension. Automatic restructuring may,
however, improve the application in other ways, such as
optimizing its performance.

Introducing new classes of functionality (e.g., Sguare,
Fractal and Qval) will usually require tailoring the user
interface as well (e.g., new menus, menu items or palette
entries). This can be accomplished by customization, as
described in a previous section, or by simple extension,
since presentation objects are defined as concrete patterns.
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Tailoring by complex extension and restructuring is much
more demanding then tailoring by simple extension.
However, in some cases complex extension can be
automated by the computer. If, for example, the
functionality to be added has already been built (e.g., as a
component of another application) and has a well-defined
protocol for communication with other applications (i.e.,
“hooks” or “slots” are known and part of the calling
application), it can be “plugged” into the calling application
by a “copy&paste” component operation [12, 17].

Complex extension was identified as “hard integration” in
the previous section. Whether this form of tailoring should
be thought of as integration or as extension depends on how
smoothly the “plug-in” operation can be performed. A short
answer to this is that if a “plug-in” can be performed by an
end-user it should be thought of as integration, and
otherwise it should be thought of as extension. Advanced
forms of extensions (complex extension and restructuring)
require design expertise and should be left to professional
developers or experienced end-user programmers.

The third and final way to bridge the design distance
between presentation objects and implementation code is to
add layers of increasingly domain-oriented extensions on top
of an implementation base layer. This is illustrated in
Figure 7, which shows the extension layers in Janus, a
domain-oriented design environment for kitchen floorplan
design [10]. It allows a user to manipulate functionality at
various levels of abstraction [9].

ldesiom'no a kitchen floorplan (w/ presentation objects)

A 1 design distance 3

(from domain-oriented layer)

I kitchen design environment I

[ architectural design environment ]

distance 2 (generic layer)

<

graphics editor I kule interpreter] Imeta classes ]

object-oriented extensions ]

ey

‘design distance 1 (from base layer) ’

LISP (implementation base layer) I

Figure 7: Bridging the design distance by extending an
implementation base layer with layers of increasingly
domain-oriented abstractions. Design distances are me-
asured against the respective slayers. Adapted from [9].

Extension layers help to shorten the design distance by
either “lifting” the implementation base by increasingly
domain-oriented layers, or by “dropping” the presentation
objects down toward the implementation code. The latter
approach was discussed in the beginning of this paper: it is
only satisfactory when the application is meant to have



interfaces to lower level substrates (graphics editing,
implementation code editing, etc.). It is not acceptable as an
interface to end-users in general. For example, creating a
kitchen floorplan with a generic drawing editor is tedious;
creating the floor plan in LISP is unacceptable.

Other systems that incorporate techniques for extension
associate a specialized language with each extension layer.
Examples are SchemePaint [8], Oval [23], and ACE [27].

Supporting tailoring by extension in a statically-compiled
language, such as BETA [20], may seem like overkill since
it requires a recompilation of a large portion of the code for
each extension to be added. Simple extensions will usually
include no more than small pieces of code which can be
quickly interpreted and directly inserted into the previously
compiled code. A solution to this problem has been
proposed by Malhotra [21, 22] and is an important
foundation for this work.

GENERAL DISCUSSION

Is it likely that end-users will tailor their applications to the
extent envisioned in this paper? Most commercial
applications already allow a significant amount of
customization; word processors, for example, have
configuration options for fonts and formatting styles. Some
of this is far from trivial, but it can be simplified if
customization issues are given high priority from the
beginning of a system development project. Integration
may be the next new wave of application/component
building, end-user programming, and tailoring. Many of
today’s applications are too complex to be maintained by
single vendors. Distributing specialized functionality
among component builders will make it possible to tailor
generic applications by integrating individually developed
specialized application components.

Tools that support tailoring by extension are not a common
feature of commercial applications today, although tailoring
by extension is, more or less, a standard way of doing
things in object-oriented programming environments.
Making this strategy available to end-users of generic
applications will require additional support mechanisms,
some of which has been suggested in this paper.

Another argument in support of tailoring by extension is
that this approach to (evolutionary) programming may be a
good way to teach object-oriented programming. Extending
a usable application gives students a relevant working
example. If the teacher provides a properly designed generic
application, all language constructs of the programming
language can be taught by example, and students will be
able to create their own unique solutions as personal
extensions to something that already works. This can be
accomplished with no more overhead than understanding the
application domain (which, of course, will vary in
complexity from domain to domain), and the students
solutions can be compared to each other.

49

FURTHER WORK

The tailoring techniques presented in this paper can be
extended by adding support for organizational changes, such
as work redesign and learning {28, 31). This is consistent
with the Scandinavian approach to system development,
which places an equal emphasis on technical and
organizational issues [1]. This paper has focused almost
exclusively on the technical issues, but it is not
incompatible with the broader approach since the individual
end-users are given first-class status. A similar effort should
be undertaken from the perspective of organizational
redesign.

An important distinction between tailoring and traditional
systems development is that tailoring does not follow a
linear analysis --> design --> implementation model.
Bgdker and Trigg [31] have suggested reversing the arrows
in the traditional model, allowing design to inform
implementation during tailoring. For this to be possible,
design representations must be accessible to users during
use, and therefore must have been integrated into the system
during development. This requires not only a new model of
tailoring but also an extended model of systems
development. The author has suggested an approach to the
former with application-units. They have design rationale as
an integrated part [25].

Some design questions for further investigation are:

»  Can scripting languages be used in the implementation
to create more domain-oriented layers of extensions?

*  Should integration languages as a rule be interpreted
rather than compiled?

*  Which is the lesser evil “fragile links” (a problem of
integration) or “fragile superclasses” (a problem of
extension)? How can they be overcome?

*  What are the relevant issues to be addressed when
choosing between a statically-typed language such as
BETA and a dynamically-typed language such as LISP
to serve as a base for implementing extensible
applications?
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